ADDITION
addplusandtotal $\square \square$increase sore sum

Addition tips...
Before you do an addition, especially with large numbers,
ESTIMATE!
2,156 rounds down to 2,000
1,473 rounds up to 1,500
$2,000+1,500=3,500$
The answer to $2,156+$
1,473 is around 3,500 .

Concrete and Pictorial methods to solve addition calculations.

Show both numbers on a place value grid using counters or by drawing it.

Add the ones and exchange 10 ones for one 10.

Add the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.

take away	take from
minus	
less	
reduce	
remain	fewer
reme	difference

Subtraction tips...

Before you do a
subtraction, especially with large numbers,
ESTIMATE!
2,371 rounds up to 2,500
1,424 rounds up to 1,500
$2,500-1,500=1,000$

The answer to 2,371 -
1,424 is around 1,000.

Step 1. Question	$2,371-1,424=$ 2371 Set out your calculation. $-\underline{1424}$
Step 2.	First subtract the ones. 1-4 won't work so exchange 1 ten $\begin{array}{r} 23{ }^{6} x^{1} 1 \\ -1424 \\ \hline \end{array}$ into the ones column so 11-4=7
Step 3.	Then subtract the tens. $233^{6} \boldsymbol{X}^{1} 1$ $6-2=4$ -1424 This is really 6 tens subtract 2 tens or $60-20=40$
Step 4.	Next subtract the hundreds. ${ }^{1} \boldsymbol{\lambda}^{1} 3^{6} \boldsymbol{x}^{1} 1$ 3-4 won't work so exchange 1 thousand into the hundreds column so 13-4=9
Step 5.	Finally subtract the thousands. ${ }^{1} \mathbf{\lambda}^{1} 3^{6} \mathbf{x}^{1} 1$ $\text { 1-1 = } \begin{aligned} & \text { Remember, this is really } 2 \\ & \text { thousands add } 1 \text { thousand or } \\ & 1,000-1,000=0 \end{aligned} \quad-14124$
Step 6. Answer	$2,371-1,424=947$ 1424 You can check this by doing the inverse. $\quad+\begin{array}{r}947 \\ \hline 2371\end{array}$

Concrete and pictorial methods to solve subtraction calculations.

1. Make (draw) the larger number (minuend) with the place value counters.

2. Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.

Now I can subtract my ones.

3. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction.

This works alongside the abstract method for subtraction.

$$
0+40+6=46 \quad \text { so } \quad 234-188=46
$$

Pictorial methods to solve multiplication calculations.

Link arrays with the grid method.
40

1. Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

$\frac{\text { Calculations }}{4 \times 126}$ 4×126

2. Add up each column, starting with the ones making any exchanges needed.

Concrete methods to solve multiplication calculations.

Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Using Numicon
$13 \times 4=52$

Put $134 s$ in a train.

Then put tens alongside to count the total quickly.

$8 \longdiv { 3 6 7 }$

STEP 2 - How many 8's in 36?
STEP 3 - How many 8's in 47?
Answer 4 remainder 4
Answer 5 remainder 7

Dividend

 $\downarrow$$40 \div 8=5$
Divisor
Quotient

Quotient

Divisor Dividend

Dividend

Quotient Remainder
Question: $367 \div 8=$
Step 1. Find 3 divided by 8 . The answer is 0
(Red) remainder 3. So write the 0 on top of the bus stop and carry the remaining 3 to the next digit.

Step 2. Find 36 divided by 8 . The answer is 4 (Orange) remainder 4. So write the 4 on top of the bus stop and carry the remaining 4 to the next digit.

Step 3. Find 47 divided by 8 . The answer is 5

(Yellow)

 remainder 7 . So write the 5 on top of the bus stop. The remainder is 7 .Answer: $\quad 367 \div 8=45 r 7$

Pictorial and concrete methods to solve division calculations.

$$
42 \div 3=
$$

Partition the dividend into tens and ones.
Start in the tens column counting groups of 3 (the divisor). Any remainders must be exchanged e.g. 1 ten $=10$ ones.

You can also set your tens and ones counters out in arrays.

Remember to exchange so each group is equal.

